[Дифференциальные уравнения ]

Дифференциальные уравнения - раздел математики, изучающий теорию и способы решения уравнений, содержащих искомую функцию и ее производные различных порядков одного аргумента (обыкновенные дифференциальные) или нескольких аргументов (дифференциальные уравнения в частных производных). Дифференциальные уравнения широко используются на практике, в частности для описания переходных процессов.

Теория дифференциальных уравнений - раздел математики, занимающийся изучением дифференциальных уравнений и связанных с ними задач. Их результаты применяются во многих естественных науках, особенно широко - в физике.

Проще говоря, дифференциальное уравнение - это уравнение, в котором неизвестной величиной является некоторая функция.При этом, в самом уравнении участвует не только неизвестная функция, но и различные ее производные. Дифференциальным уравнением описывается связь между неизвестной функцией и ее производными. Такие связи отыскиваются в различных областях знаний: в механике, физике, химии, биологии, экономике и др.

Различают обыкновенные дифференциальные уравнения и дифференциальные уравнения в частных производных. Более сложными являются интегро-дифференциальные уравнения.

Сначала дифференциальные уравнения возникли из задач механики, в которых участвовали координаты тел, их скорости и ускорения, рассматриваемые как функции от времени.

Дифференциальное уравнение называется интегрируемых в квадратурах, если задачу нахождения всех развязок связей можно свести к вычислению конечного числа интегралов от известных функций и простых алгебраических операций.
История

                       Леонард Эйлер                                          Жозеф-Луи Лагранж
                                                                             



Дифференциальные уравнения изобретены Ньютоном (1642-1727). Ньютон считал это свое изобретение настолько важным, что зашифровал его в виде анаграммы, смысл которой в современных терминах можно свободно передать так: «законы природы выражаются дифференциальными уравнениями».

Основным аналитическим достижением Ньютона было разложение всевозможных функций в степенные ряды (смысл второй, длинной анаграммы Ньютона в том, что для решения любого уравнения нужно подставить в уравнение ряд и приравнять члены одинакового степени). Особое значение имела здесь открытая им формула бинома Ньютона (разумеется, не только с целыми показателями, для которых формулу знал, например, Виет (1540-1603), но и, что особенно важно, с дробными и отрицательными показателями). Ньютон разложил в «ряды Тейлора» все основные элементарные функции Это, вместе с составленной им таблице первобытных (которая перешла в почти неизменном виде в современные учебники анализа ), позволяло ему, по его словам, сравнивать площади любых фигур «за половину четверти часа».

Ньютон указывал, что коэффициенты его рядов пропорциональны последовательным производным функции, но не останавливался на этом подробно, поскольку он справедливо считал, что все вычисления в анализе удобнее проводить не с помощью кратных дифференцировок, а путем вычисления первых членов ряда. Для Ньютона связь между коэффициентами ряда и производными был скорее средством вычисления производных, чем средством составления ряда. Одним из важнейших достижений Ньютона является его теория солнечной системы, изложенная в «Математических принципах натуральной философии» («Principia») без помощи математического анализа. Обычно считают, что Ньютон открыл с помощью своего анализа закон всемирного тяготения. На самом деле Ньютону (1680) принадлежит лишь доказательство эллиптичности орбит в поле притяжения по закону обратных квадратов: сам этот закон был указан Ньютону Гуком (1635-1703) и, пожалуй, угадывался еще несколькими учеными.

Пьер-Симон Лаплас
      

                                                           Из огромного числа работ XVIII века по дифференциальным уравнениям выделяются работы Эйлера (1707-1783)  и Лагранжа(1736-1813). В этих работах была прежде развита теория малых колебаний, а следовательно -   теория линейных систем дифференциальных уравнений; попутно возникли основные понятия линейной алгебры (собственные числа и векторы в n-мерном случае). Характеристическое уравнение линейного оператора долго называли секулярным, поскольку именно из такого уравнения определяются секулярные (возрастные, т.е. медленные по сравнению с годовым движением) возмущения планетных орбит согласно теории малых колебаний Лагранжа. Вслед за Ньютоном Лаплас и Лагранж, а позже Гаусс (1777-1855) развивают также методы теории возмущений.

Жозеф Лиувилль
     

                                                   Когда была доказана неразрешимость алгебраических уравнений в радикалах, Жозеф Лиувилль                        (1809-1882) построил аналогичную теорию для дифференциальных уравнений, установив невозможность решения ряда уравнений (в частности таких классических, как линейные уравнения второго порядка) в элементарных функциях и квадратурах. Позже Софус Ли (1842-1899), анализируя вопрос об интегрировании уравнений в квадратурах, пришел к необходимости детально исследовать группы дифеоморфизмив (получившие впоследствии имя групп Ли ) - так по теории дифференциальных уравнений возникла одна из самых плодотворных областей современной математики, дальнейшее развитие которой было тесно связано совсем с другими вопросами ( алгебры Ли еще раньше рассматривали Симеон-Дени Пуассон (1781-1840) и, особенно, Карл Густав Якоб Якоби (1804-1851)).

Анри Пуанкаре
              

                                              Новый этап развития теории дифференциальных уравнений начинается с работ Анри Пуанкаре (1854-1912),     созданная им «качественная теория дифференциальных уравнений» вместе с теорией функций комплексных  переменных привела к основанию современной топологии. Качественная теория дифференциальных уравнений, или, как теперь ее чаще называют, теория динамических систем, сейчас развивается наиболее активно и имеет наиболее важные применения теории дифференциальных уравнений в естествознании.